Combinatorics, 2016 Fall, USTC
Week 14, December 6 & 8

The Probabilistic Methods in Combinatorics

Theorem 1. Let G = (V, E) be a graph on n vertices and with minimum

14+In(1+46
degree 6 > 1. Then G contains a dominating set of at most % “n

vertices.

Proof. For p € (0,1)(will determine the value of p later). We pick each vertex
in V(G) with probability p uniformly at random. Let X be the random set
of vertices picked. Let Y be the random set of vertices y € V' \ X, which
has no neighbors in X. That is, y € Y if and only if y is not picked and all
neighbors of y are not picked. So

PyeY)=(1—p)"*tW L (1 —p)*? L e (4D
Then,

E[Y|=ED) lyevy) =Y Py ey)<n- e
yev yev
Also, E[|X]] = np.
Claim: X UY is a dominating set of G. Why? (exercise)

Since

EX Y] = E[X]] + B[Y]] < n(p + e7*7)

In(1
Check when p = H(Ti;s), + e P49 is minimized. So we fix p =
In(1+9) 1+ 1In(1+9)
——toget K[| XUY|| < ———F=n. |
1+9 o get E|XUY] 1+9 "
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Definition 2. For G = (V, E), an independent set (or a stable set) I C V' is
a subset of vertices which has NO edges in it.

Let a(G) = maz|I| over all independent set I C V.
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Theorem 3. For any graph G, o(G) > ZvEV m

where d(v) devotes

the degree of v in G.

Proof. Let V(G) = [n]. For i € [n], let N; be the neighborhood of i in G.
Let S,, = { permutations 7 : [n] — [n]}.

For given 7 € S,,, we say a vertex i € [n] is m—dominating, if 7(i) < 7(j)
in 7w for Vj € N;, Let M, = { all 7—dominating vertices }.

Claim: V7 € S,,, M, is an independent set.

Pf of Claim: Suppose not, then 3i,5 € M(w) with ij € E(G). Let
(i) < mw(j) = j ¢ M(r), a contradiction.

Pick an 7 € S,, uniformly at random, compute E[|M,]|]?

Note |M,| = Zie[n] L{i is n—dominating}- S0 E|Mz| = Zie[n] P(iis m —
dominating)

Recall: i is 7— dominating iff 7(4) is the minimum over {i} U N;. Since 7
is random, every vertex in {i} U N; has the equal probability to achieve the

Thus

minimum in 7, which is

1+d(i)

. L 1
E[|M,|] = Z P(i is m — dominating) = Z 1740
1€[n] eV

Pf: Exercise

Corollary 4 (Turan’s Thm exact form). If an n-vertex graph G is K, -free,

then e(G) < e(Tr(n)) ~ r—12

n




Definition 5. Turan’s graph Tr(n) is a graph on n vertices s.t. V(G) =
ViuVaU. ..UV, and ||Vi| — |V;]| < 1 where ab € E(G) iff a € V; and b € 'V

for some i # j

Theorem 6. (Turdn’s Thm approximate form) If G is K, 1—free, then

e(G)ér_l 9

n

Pfl: By the Corollary.
Pf2: Consider the vertices of G as [n] and for Vi € [n]. Assign a weight
p; to it such that

Y pi=1& pi=0 (1)

i€[n]
Find the max of f(p) = >, ;c p(q) Pipj over all weight functions p : [n] — [0, 1]
satisfying (1).
Claim: If ij ¢ E(G) and p;, p; > 0, then we can let p; — 0, p; — p; + p;
or p; = p; +pj, p; — 0 to increase the value of f(p).
Pf of Claim: Let S; = >,y pr and S; = ZkeNj pr. Let S; > S, then

after assigning the new weight p* satisfies

f0*) = f(p) — (0iSi + p;S;) + (i +p;)Si = f(p) + (Si — S;)p; = f(p)

Now we keep applying this claim when stop, we arrive at some (p1, po, ...,
Pn) S.t. the vertices ¢ with p; > 0 form a clique K is G. Since G is K, —free,

= s<7r. So

=5 3w = X Al=gi- Y A
)

1€V (Ks) i€V (Ks i€V (Ks)
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As ZieV(Ks)pz2 > s
1 1 1 1 r—1
<(1—2)< =(1—2)=
:f(p)\Q( s)\Q( r) o
e(G r—1
= 512)<maxf(p)< >
r—1
= ¢(G) < ‘n

The Deleting Method

Previously, we often define an appropriate probability space and then

show the random structure with desired property occurs with positive prob-
ability.

Today, we extend this and consider situation where random structure does
not always have the desired property, and may have some very few "blem-
ishes". After deleting all blemishes, we will obtain the wanted structure.

Recall: (Turdan Thm) For any G, o(G) > > .\, #(v).

Corollary 7. VG with m edges and n vertices, — a(G) > %ﬁn Ifm = %d,

where d=average degree, then a(G) > 1.

Next, we’ll see a short argument, which shows the half-way of the previous

result.

Theorem 8. Let G be a graph on n vertices and with average degree d. Then
a(G) > 35
Proof. Let S C V(G) be a random subset, where for Vo € V, P.(v € S) =p

and value of p will be determined later.
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Let X = |S| and Y = e(S), = E[X]| =np & E[Y] =mp? =p* - &

nd d
— E[X =Y]=np—p-— =n(p—5p°)

By choosing p = }i, we have E[X — Y] = 75. So there is a particular set
S such that [S| —e(S) > E[X —Y] = 35. Now we delete one vertex for each
edge of S. This leaves a subset S* C S. Since all edges of S are destroyed,

S* must be an independent set of size > |S| — e(S) > |

n
2d
k
2

Recall: If (1)2'~(2) <1, then R(k. k) > n. = R(k,k) > —L-k25.

Theorem 9. ForVn, R(k,k) >n — (2)21_(5).

Proof. Consider a random 2-edge-coloring of K,, where each edge is col-
ored by red or blue with probability %, independent of other choices. For
A € ([Z]), let X4 be the indicator random variable of the event that A is

monochromatic.

Let X =) ae(t) X 4 be the number of monochromatic k-subsets.
k

E[X] = A%}) E[X4] = <Z>21(§)

k
2

Then there exist a 2-edge-coloring of K, s.t. X < E[X] = (2)217( ). Fix

such a 2-edge-coloring, remove one vertex from each monochromatic k-subset.
k}
This will delete at most X < (2)21_(2> vertices and destroy all monochro-

k
matic K} s. So it remains at least n — (2)21*(2) vertices, which has NO



monochromatic K.

— R(k,k) >n — (Z) 91-(2)

Find max,{n — (2)21_(’5)}, — R(k, k) > (1 + o(1))k2%.

Markov’s Inequality
Let X > 0 be a random variable and t>0, then P(X >t) < ETX]

Corollary 10. Let X,, > 0 be integer value random variable for n € N in
(Q, Py). If E[X,,] = 0 as n — 400, then P.(X, =0) = 1(as n — +o0)

i.e. X, =0 almost surely occur.

Theorem 11. For a random graph G(n,p) for some fized p € (0,1), then

21
P (a(x) < [ﬂ}) —1 as n— 400
p

Proof. Let k = (Zl%} For any S € (k[i]l), let A, be the event that S is an

independent set. Let X,, = > se(,m) 144 be the number of independent set
n+1

of size k+1. We want P.(X,, =0) — 1 as n — +00. Compute

k+1

BIX.) = Yse(m) Prlds) = (1) (1 -p)%)

k+1
nk+1 —p k+1

By the corollary, P.(X, =0) = 1 asn — 400 < P.(a(G) < [21%1) —1



Definition 12. For any G, the chromatic number x(G) is the minimum

integer k s.t. V(G) can be partitioned into k independent sets.

Fact 1: x(K,) =n.
Fact 2: For any G on n-vertices, x(G) - a(G) > n.

Definition 13. The girth of G denoted by g(G) is the length of a shortest

cycle in G.

Theorem 14 (Erdés). For any k € NT, there exists a graph G with x(G) >
k& ¢g(G)>k.

Proof. Consider G=G(n,p) where p will be determined later.
Recall: Let t = [21%}, then a(G) <t almost surely.
Let X = #of cycles of length less than k in G.

k—1

E[X] :Zn(n—l)--éi(n—ijtl) .

where w is the number of positive C/s in K,,.

k
-1
= BX] < (np) = (np)" =1
i=3 np— 1
By Markov’s inequality,
EX 2 k1
2 n/2 n(np — 1)



Let p = n_%,

:>PT(X>2)<——>O as mn— +oo

2(n —1)
2 n(n% —1)

= 3G on n vertices, a(G) < t and with < 7 cycles of length less than k,
where ¢t = (21%1 <3lnn-n'r.

By deleting one vertex from each cycle of length less than k, we have a
graph G* C GG, with NO cycles of length less than k.

V(@) >n—%=%

2~ 2
a(G*) < a(G) < 3lnn - n'%




