
Combinatorics, 2016 Fall, USTC

Week 14, December 6 & 8

The Probabilistic Methods in Combinatorics

Theorem 1. Let G = (V,E) be a graph on n vertices and with minimum

degree δ > 1. Then G contains a dominating set of at most
1 + ln(1 + δ)

1 + δ
· n

vertices.

Proof. For p ∈ (0, 1)(will determine the value of p later). We pick each vertex

in V (G) with probability p uniformly at random. Let X be the random set

of vertices picked. Let Y be the random set of vertices y ∈ V \ X, which

has no neighbors in X. That is, y ∈ Y if and only if y is not picked and all

neighbors of y are not picked. So

P (y ∈ Y ) = (1− p)1+d(y) 6 (1− p)1+δ 6 e−p(1+δ)

Then,

E[|Y |] = E[
∑
y∈V

1{y∈Y }] =
∑
y∈V

P (y ∈ Y ) 6 n · e−p(1+δ)

Also, E[|X|] = np.

Claim: X ∪ Y is a dominating set of G. Why? (exercise)

Since

E[|X ∪ Y |] = E[|X|] + E[|Y |] 6 n(p+ e−p(1+δ))

Check when p =
ln(1 + δ)

1 + δ
, p + e−p(1+δ) is minimized. So we fix p =

ln(1 + δ)

1 + δ
to get E[|X ∪ Y |] 6 1 + ln(1 + δ)

1 + δ
· n.
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Definition 2. For G = (V,E), an independent set (or a stable set) I ⊆ V is

a subset of vertices which has NO edges in it.

Let α(G) = max|I| over all independent set I ⊆ V .

Theorem 3. For any graph G, α(G) >
∑

v∈V
1

d(v) + 1
where d(v) devotes

the degree of v in G.

Proof. Let V (G) = [n]. For i ∈ [n], let Ni be the neighborhood of i in G.

Let Sn = { permutations π : [n]→ [n]}.

For given π ∈ Sn, we say a vertex i ∈ [n] is π−dominating, if π(i) < π(j)

in π for ∀j ∈ Ni, Let Mπ = { all π−dominating vertices }.

Claim: ∀π ∈ Sn, Mπ is an independent set.

Pf of Claim: Suppose not, then ∃i, j ∈ M(π) with ij ∈ E(G). Let

π(i) < π(j)⇒ j /∈M(π), a contradiction.

Pick an π ∈ Sn uniformly at random, compute E[|Mπ|]?

Note |Mπ| =
∑

i∈[n] 1{i is π−dominating}. So E|Mπ| =
∑

i∈[n] P (i is π −

dominating)

Recall: i is π− dominating iff π(i) is the minimum over {i}∪Ni. Since π

is random, every vertex in {i} ∪Ni has the equal probability to achieve the

minimum in π, which is
1

1 + d(i)
. Thus

E[|Mπ|] =
∑
i∈[n]

P (i is π − dominating) =
∑
i∈V

1

1 + d(i)

Pf: Exercise

Corollary 4 (Turán’s Thm exact form). If an n-vertex graph G is Kr+1-free,

then e(G) 6 e(Tr(n)) ≈ r − 1

2r
n2
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Definition 5. Turán’s graph Tr(n) is a graph on n vertices s.t. V (G) =

V1 ∪ V2 ∪ ... ∪ Vr and ||Vi| − |Vj|| 6 1 where ab ∈ E(G) iff a ∈ Vi and b ∈ Vj
for some i 6= j

Theorem 6. (Turán’s Thm approximate form) If G is Kr+1−free, then

e(G) 6
r − 1

2r
n2

Pf1: By the Corollary.

Pf2: Consider the vertices of G as [n] and for ∀i ∈ [n]. Assign a weight

pi to it such that ∑
i∈[n]

pi = 1 & pi > 0 (1)

Find the max of f(p) =
∑

ij∈E(G) pipj over all weight functions p : [n]→ [0, 1]

satisfying (1).

Claim: If ij /∈ E(G) and pi, pj > 0, then we can let pi → 0, pj → pi + pj

or pi → pi + pj, pj → 0 to increase the value of f(p).

Pf of Claim: Let Si =
∑

k∈Ni
pk and Sj =

∑
k∈Nj

pk. Let Si > Sj, then

after assigning the new weight p∗ satisfies

f(p∗) = f(p)− (piSi + pjSj) + (pi + pj)Si = f(p) + (Si − Sj)pj > f(p)

Now we keep applying this claim when stop, we arrive at some (p1, p2, ...,

pn) s.t. the vertices i with pi > 0 form a cliqueKs is G. Since G isKr+1−free,

⇒ s 6 r. So

f(p) =
1

2
[(
∑

i∈V (Ks)

pi)
2 −

∑
i∈V (Ks)

p2i ] =
1

2
[1−

∑
i∈V (Ks)

p2i ]
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As
∑

i∈V (Ks)
p2i >

1

s

⇒ f(p) 6
1

2
(1− 1

s
) 6

1

2
(1− 1

r
) =

r − 1

2r

⇒ e(G)

n2
6 max f(p) 6

r − 1

2r

⇒ e(G) 6
r − 1

2r
· n2

The Deleting Method
Previously, we often define an appropriate probability space and then

show the random structure with desired property occurs with positive prob-

ability.

Today, we extend this and consider situation where random structure does

not always have the desired property, and may have some very few "blem-

ishes". After deleting all blemishes, we will obtain the wanted structure.

Recall: (Turán Thm) For any G, α(G) ≥
∑

v∈V
1

1+d(v)
.

Corollary 7. ∀G with m edges and n vertices, =⇒ α(G) ≥ n2

2m+n
. If m = nd

2
,

where d=average degree, then α(G) ≥ n
1+d

.

Next, we’ll see a short argument, which shows the half-way of the previous

result.

Theorem 8. Let G be a graph on n vertices and with average degree d. Then

α(G) ≥ n
2d
.

Proof. Let S ⊂ V (G) be a random subset, where for ∀v ∈ V , Pr(v ∈ S) = p

and value of p will be determined later.
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Let X = |S| and Y = e(S), =⇒ E[X] = np & E[Y ] = mp2 = p2 · nd
2

=⇒ E[X − Y ] = np− p2 · nd
2

= n(p− d

2
p2)

By choosing p = 1
d
, we have E[X − Y ] = n

2d
. So there is a particular set

S such that |S| − e(S) ≥ E[X − Y ] = n
2d
. Now we delete one vertex for each

edge of S. This leaves a subset S∗ ⊂ S. Since all edges of S are destroyed,

S∗ must be an independent set of size ≥ |S| − e(S) ≥ n
2d

Recall: If
(
n
k

)
21−(k

2) < 1, then R(k, k) > n. =⇒ R(k, k) > 1
e
√
2
k2

k
2 .

Theorem 9. For ∀n, R(k, k) > n−
(
n
k

)
21−(k

2).

Proof. Consider a random 2-edge-coloring of Kn, where each edge is col-

ored by red or blue with probability 1
2
, independent of other choices. For

A ∈
(
[n]
k

)
, let XA be the indicator random variable of the event that A is

monochromatic.

Let X =
∑

A∈([n]
k )XA be the number of monochromatic k-subsets.

E[X] =
∑

A∈([n]
k )

E[XA] =

(
n

k

)
21−(k

2)

Then there exist a 2-edge-coloring of Kn s.t. X ≤ E[X] =
(
n
k

)
21−(k

2). Fix

such a 2-edge-coloring, remove one vertex from each monochromatic k-subset.

This will delete at most X ≤
(
n
k

)
21−(k

2) vertices and destroy all monochro-

matic K ′ks. So it remains at least n −
(
n
k

)
21−(k

2) vertices, which has NO
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monochromatic Kk.

=⇒ R(k, k) > n−
(
n

k

)
21−(k

2)

Find maxn{n−
(
n
k

)
21−(k

2)}, =⇒ R(k, k) > 1
e
(1 + o(1))k2

k
2 .

Markov’s Inequality
Let X ≥ 0 be a random variable and t>0, then P (X ≥ t) ≤ E[X]

t

Corollary 10. Let Xn ≥ 0 be integer value random variable for n ∈ N+ in

(Ωn, Pn). If E[Xn] → 0 as n → +∞, then Pr(Xn = 0) → 1(as n → +∞)

i.e. Xn = 0 almost surely occur.

Theorem 11. For a random graph G(n,p) for some fixed p ∈ (0, 1), then

Pr(α(x) ≤ d2lnn
p
e)→ 1 as n→ +∞

Proof. Let k = d2lnn
p
e. For any S ∈

(
[n]
k+1

)
, let As be the event that S is an

independent set. Let Xn =
∑

S∈( [n]
n+1)

1AS
be the number of independent set

of size k+1. We want Pr(Xn = 0)→ 1 as n→ +∞. Compute

E[Xn] =
∑

S∈( [n]
k+1)

Pr(AS) =
(
n
k+1

)
(1− p)(

k+1
2 )

≤ nk+1

(k+1)!
e−p(

k+1
2 )

= 1
(k+1)!

(ne−p·
k
2 )k+1

≤ 1
(k+1)!

→ 0

By the corollary, Pr(Xn = 0)→ 1 as n→ +∞⇔ Pr(α(G) ≤ d2lnn
p
e)→ 1
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Definition 12. For any G, the chromatic number χ(G) is the minimum

integer k s.t. V(G) can be partitioned into k independent sets.

Fact 1: χ(Kn) = n.

Fact 2: For any G on n-vertices, χ(G) · α(G) ≥ n.

Definition 13. The girth of G denoted by g(G) is the length of a shortest

cycle in G.

Theorem 14 (Erdős). For any k ∈ N+, there exists a graph G with χ(G) ≥

k & g(G) ≥ k.

Proof. Consider G=G(n,p) where p will be determined later.

Recall: Let t = d2lnn
p
e, then α(G) ≤ t almost surely.

Let X = #of cycles of length less than k in G.

E[X] =
k−1∑
i=3

n(n− 1) · · · (n− i+ 1)

2i
· pi

where n(n−1)···(n−i+1)
2i

is the number of positive C ′is in Kn.

⇒ E[X] ≤
k−1∑
i=3

(np)i =
(np)k − 1

np− 1

By Markov’s inequality,

Pr(X >
n

2
) ≤ E[X]

n/2
≤ 2[(np)k − 1]

n(np− 1)
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Let p = n−
k−1
k ,

⇒ Pr(X >
n

2
) <

2(n− 1)

n(n
1
k − 1)

→ 0 as n→ +∞

⇒ ∃G on n vertices, α(G) ≤ t and with ≤ n
2
cycles of length less than k,

where t = d2lnn
p
e ≤ 3lnn · n k−1

k .

By deleting one vertex from each cycle of length less than k, we have a

graph G∗ ⊂ G, with NO cycles of length less than k.

 |V (G∗)| ≥ n− n
2

= n
2

α(G∗) ≤ α(G) ≤ 3lnn · n k−1
k

χ(G∗) ≥ |V (G∗)|
α(G∗)

≥ n1/k

6lnn
>> k.
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